All problems are to be done without the use of a calculator unless denoted with an *. You may show you work in this packet OR on graph/lined paper.

1.

Convert the point whose polar coordinates are $(1/\sqrt{2}, 3\pi/4)$ to rectangular coordinates.

- (a) $\left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right)$ (b) $\left(-\frac{1}{2}, \frac{1}{2}\right)$ (c) $\left(-\sqrt{2}, \sqrt{2}\right)$ (d) $\left(\sqrt{3}, \sqrt{2}\right)$ (e) $\left(-1, 1\right)$

2.

Which of the following is **not** a polar point representation for the point $(3, \pi/3)$?

- (a) $(3,7\pi/3)$ (b) $(-3,4\pi/3)$ (c) $(3,2\pi/3)$ (d) $(-3,10\pi/3)$ (e) $(3,13\pi/3)$

3.

Convert the rectangular coordinates to polar coordinates with r > 0 and $0 \le \theta < 2\pi$.

$$\left(-2\sqrt{3},-2\right)$$

- (a) $(4, \pi/6)$ (b) $(4, 5\pi/3)$ (c) $(2, 11\pi/6)$ (d) $(4, 7\pi/6)$ (e) none of these

4.

Convert the rectangular coordinates to polar coordinates with r > 0 and $0 \le \theta < 2\pi$.

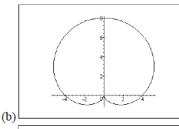
$$(0, -\sqrt{2})$$

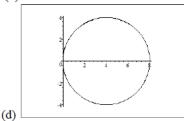
- (a) $(4, \pi/2)$ (b) $(\sqrt{2}, 3\pi/2)$ (c) $(4, 3\pi/2)$ (d) $(\sqrt{2}, \pi)$ (e) $(4, \pi)$

5.

Graph the polar equation $r = 8 \cos \theta$.







All problems are to be done without the use of a calculator unless denoted with an *. You may show you work in this packet OR on graph/lined paper.

6.

Convert the equation to polar form.

$$x^2 + y^2 = 4$$

- (a) $r^2 = 4$
- (b) $4r = \cos \theta + \sin \theta$ (c) $r = 4\cos \theta + 4\sin \theta$ (d) r = 4 (e) none of these

7.

Convert the polar equation to rectangular coordinates.

$$\frac{r}{3} = \csc \theta$$

- (a) y = 3

- (b) x = 3 (c) xy = 3 (d) y = 3x + 1
- (e) none

8.

Find the first four terms sequence $a_n = n - 1$.

(a)
$$a_1 = -1$$
, $a_2 = 0$, $a_3 = 1$, $a_4 = 2$

(b)
$$a_1 = 0$$
, $a_2 = 1$, $a_3 = 2$, $a_4 = 3$

(c)
$$a_1 = -2$$
, $a_2 = -3$, $a_3 = -4$, $a_4 = -5$

(d)
$$a_1 = 1$$
, $a_2 = 2$, $a_3 = 3$, $a_4 = 4$

(e) none of these

9.

Find the 1000th term of the sequence $a_n = (-1)^n \frac{n+2}{n}$.

(a)
$$a_{1000} = -\frac{501}{500}$$

(b)
$$a_{1000} = \frac{251}{250}$$

(c)
$$a_{1000} = \frac{120}{125}$$

(a)
$$a_{1000} = -\frac{501}{500}$$
 (b) $a_{1000} = \frac{251}{250}$ (c) $a_{1000} = \frac{126}{125}$ (d) $a_{1000} = -\frac{126}{125}$ (e) $a_{1000} = \frac{501}{500}$

(e)
$$a_{1000} = \frac{501}{500}$$

10.

Find the first five terms of the sequence $a_n = 3a_{n-1} - 1$, where $a_1 = 3$.

(a)
$$a_1 = 1$$
, $a_2 = 6$, $a_3 = 21$, $a_4 = 66$, $a_5 = 201$

(b)
$$a_1 = 3$$
, $a_2 = 9$, $a_3 = 27$, $a_4 = 69$, $a_5 = 226$

(c)
$$a_1 = 3$$
, $a_2 = 8$, $a_3 = 23$, $a_4 = 68$, $a_5 = 203$

(d)
$$a_1 = 1$$
, $a_2 = 7$, $a_3 = 22$, $a_4 = 67$, $a_5 = 202$

(e) none of these

All problems are to be done without the use of a calculator unless denoted with an *. You may show you work in this packet OR on graph/lined paper.

11.

Find the n^{th} term of the sequence whose first several terms are $\frac{1}{4}, -\frac{1}{9}, \frac{1}{16}, -\frac{1}{25}, \dots$

- (a) $a_n = \frac{(-1)^{n+1}}{n^2}$ (b) $a_n = \frac{(-1)^{n+1}}{(n+1)^2}$ (c) $a_n = \frac{(n+1)^n}{4^2}$ (d) $a_n = \frac{(1)^n}{(2n)^2}$ (e) none of these

12.

The first four terms of a sequence are given. Determine whether they can be terms of an arithmetic sequence, a geometric sequence, or neither. If the sequence is arithmetic find the common difference. If the sequence is geometric find the common ratio.

$$-s, -2s, -3s, -4s, \dots$$

- (a) arithmetic, d = −s
- (b) arithmetic, $d = -\frac{1}{2}$
- (c) geometric, $r = \frac{3s}{2}$
- (d) geometric, $r = -\frac{s}{4}$
- (e) neither

13.

Given that the 5th term of an arithmetic sequence is 30 and the 7th term is 44, find the first term.

- (a) $a_1 = 7$
- (b) $a_1 = 4$
- (c) $a_1 = -4$
- (d) $a_1 = -2$
- (e) $a_1 = 2$

14.

The first term of the arithmetic sequence is $\frac{2}{3}$ and the common difference is $\left(-\frac{2}{3}\right)$. Which term of this sequence is $-\frac{20}{3}$?

- (a) 10th term (b) 12th term (c) 13th term (d) 16th term (e) 6th term

15.

The common ratio of a geometric sequence is $\frac{3}{7}$ and the fourth term is $\frac{1}{7}$. Find the third term.

- (a) $a_3 = \frac{1}{3}$ (b) $a_3 = \frac{7}{3}$ (c) $a_3 = \frac{3}{7}$ (d) $a_3 = \frac{5}{3}$ (e) $a_3 = \frac{2}{7}$

All problems are to be done without the use of a calculator unless denoted with an *. You may show you work in this packet OR on graph/lined paper.

16.

Find the fourth term of the geometric sequence given $a_1 = 7$ and $r = \frac{1}{7}$.

- (a) $a_4 = \frac{1}{7}$ (b) $a_4 = -\frac{1}{49}$ (c) $a_4 = \frac{1}{14}$ (d) $a_4 = \frac{1}{49}$ (e) $a_4 = 49$

17.

Find the values of a and b for which the sequence 2, a, b, 17,... is arithmetic.

- (a) a = 7, b = 12 (b) a = 6, b = 12 (c) a = 8, b = 12 (d) a = 10, b = 12 (e) a = 8, b = 15

18*.

A man gets a job with a salary of \$50,000 a year. He is promised an \$1800 raise each subsequent year. Find his total earnings for a 10-year period.

- (a) \$518,000
- (b) \$851,000
- (c) \$1,581,000
- (d) \$481,000
- (e) none of these

19.

Write the sum without using sigma notation.

$$\sum_{n=2}^{100} \frac{1}{n-1}$$

(a)
$$1+2+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}$$

(b)
$$\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{98} + \frac{1}{99}$$

(c)
$$\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{99} + \frac{1}{100}$$

(d)
$$\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{97} + \frac{1}{98}$$

(e) none of these

20.

Write the sum using sigma notation.

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{999\cdot 1000}$$

(a)
$$\sum_{n=1}^{1000} \frac{1}{n(n+1)}$$

(b)
$$\sum_{n=1}^{1000} \frac{1}{n(n-1)}$$

(c)
$$\sum_{n=1}^{999} \frac{1}{n(n+1)}$$

(a)
$$\sum_{n=1}^{1000} \frac{1}{n(n+1)}$$
 (b) $\sum_{n=1}^{1000} \frac{1}{n(n-1)}$ (c) $\sum_{n=1}^{999} \frac{1}{n(n+1)}$ (d) $\sum_{n=1}^{1001} \frac{1}{n(n+1)}$ (e) $\sum_{n=1}^{999} \frac{1}{n(n-1)}$

(e)
$$\sum_{n=1}^{999} \frac{1}{n(n-1)}$$

All problems are to be done without the use of a calculator unless denoted with an *. You may show you work in this packet OR on graph/lined paper.

21.

Find the sum.

 $2+4+6+8+\cdots+100$

- (a) 2000 (b) 200 (c) 2050 (d) 1550 (e) none of these

22*.

Determine whether the expression is a partial sum of an arithmetic or geometric sequence. Then find

5 + 25 + 125 + ... + 3125

- (a) 19530 (b) 7810 (c) 3125 (d) 3280 (e) 3905

23*.

The seventh term of an arithmetic sequence is -16 and the tenth term is -31. Find the twenty-fourth

- (a) $a_{24} = -101$ (b) $a_{24} = -66$ (c) $a_{24} = -55$ (d) $a_{24} = -201$ (e) $a_{24} = -51$

24.

Find the sum of the infinite geometric series.

 $a + ax^2 + ax^4 + ax^6 + ...$

- (a) $S = \frac{x}{1 a^2}$ (b) $S = \frac{a}{1 x^4}$ (c) $S = \frac{x^2}{1 a^2}$ (d) $S = \frac{1}{1 + x^2}$ (e) $S = \frac{a}{1 x^2}$

25.

A ball rebounds to one-quarter the height from which it was dropped. Approximate the total vertical distance the ball travels after being dropped from 3 ft above the ground, until it comes to rest.

- (a) 5 ft (b) 5.25 ft (c) 4.125 ft (d) 3.5 ft (e) 3.25 ft

26.

Find the second term in the expansion of $\left(x^2 - \frac{1}{x}\right)^{30}$.

- (a) $50x^{97}$ (b) $-47x^{47}$ (c) $-50x^{48}$ (d) $50x^{49}$ (e) $-50x^{97}$

All problems are to be done without the use of a calculator unless denoted with an *. You may show you work in this packet OR on graph/lined paper.

27.

Expand the expression.

$$(1-xy)^4$$

(a)
$$4-xy+6x^2y^2-4x^3y^3+x^4y^4$$

(b)
$$1-xy+6x^2y^2-4x^3y^3+4x^4y^4$$

(c)
$$1-4xy+4x^2y^2-6x^3y^3+x^4y^4$$

(d)
$$4-4xy+x^2y^2-x^3y^3+4x^4y^4$$

(e)
$$1-4xy+6x^2y^2-4x^3y^3+x^4y^4$$

28.

Find the coefficient of a^4b^4 in the expansion of $(b-a)^8$.

- (a) -28 (b) 28 (c) -56 (d) 56

- (e) 70

29*.

Complete the table of values (to five decimal places) and use the table to estimate the value of the limit.

$$\lim_{x \to 1} \frac{x^2 - 1}{x^3 + x^2 - 2x}$$

x	0.9	0.99	0.999	1.001	1.01	1.1
f(x)						

- (a) 0.725
- (b) 0.65
- (c) 1.34
- (d) 1.67
- (e) none of these

30*.

Complete the table of values to estimate the value of the limit.

$$\lim_{x\to 0^+} \frac{1-\cos x}{x^2}$$

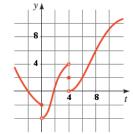
x	2	1	0.5	0.1	0.05
f(x)					

- (a) 2.005
- (b) 2.105
- (c) 0.05
- (d) 0.5
- (e) .4895

All problems are to be done without the use of a calculator unless denoted with an *. You may show you work in this packet OR on graph/lined paper.

31.

For the function g whose graph is given, state the value of the given quantity if it exists.



(a)
$$\lim_{t \to a} g(t) = -a$$

(b)
$$\lim_{x\to 4} g(t) = 0$$

(c)
$$\lim_{t \to 0} g(t) = 4$$

(c)
$$\lim_{x\to 4} g(t) = 4$$
 (d) $\lim_{x\to 4} g(t) = 2$ (e) does not exist

32.

Let
$$f(x) = \begin{cases} 3 & \text{if } x < 0 \\ 2x - 3 & \text{if } x \ge 0 \end{cases}$$
. Find $\lim_{x \to 0^+} f(x)$.

(a)
$$\lim_{x\to 0^+} f(x) = \infty$$

(b)
$$\lim_{x\to 0^+} f(x) = 0$$

(c)
$$\lim_{x\to 0^+} f(x) = 1.5$$

(d)
$$\lim_{x \to 0^+} f(x) = 3$$

(e)
$$\lim_{x \to 0^+} f(x) = -3$$

33.

Graph the piecewise function. Use your graph to find $\lim_{x\to 1} f(x)$.

$$f(x) = \begin{cases} -x^2 + 3 & \text{if } x < 1\\ 5 & \text{if } x = 1\\ x + 1 & \text{if } x > 1 \end{cases}$$

(a)
$$\lim_{x \to 1} f(x) = 1$$

(b)
$$\lim_{x \to 1} f(x) = 2$$

(c)
$$\lim_{x \to 1} f(x) = 5$$

(d)
$$\lim_{x \to 1} f(x) = \infty$$

All problems are to be done without the use of a calculator unless denoted with an *. You may show you work in this packet OR on graph/lined paper.

34.

Use the Limit Laws to evaluate the limit, if it exists.

$$\lim_{x \to 1} \left(x^3 + x^2 + x + 1 \right)$$

- (a) 2
- (b) 4
- (c) 3
- (d) 1
- (e) 0

35.

Use the Limit Laws to evaluate the limit, if it exists.

$$\lim_{x \to -3} \frac{x^2 - 9}{x^2 + 2x - 3}$$

- (b) -3 (c) $\frac{3}{2}$ (d) ∞ (e) does not exist

36.

Evaluate the limit if it exists.

$$\lim_{t\to 0} \left(\frac{1}{3t} - \frac{1}{t^2 + 3t} \right)$$

- (a) 1/3
- (b) -1/3
- (c) 0
- (d) 1/9
- (e) does not exist

37*.

Evaluate the limit, if it exists.

$$\lim_{x \to 1} \frac{1-x}{1-x}$$

- (a) -1
- (b) 1
- (c) 0
- (d) ∞
- (e) does not exist

38.

Evaluate the limit, if it exists.

$$\lim_{x \to \infty} \frac{x^3 + 1}{x^5 - 3x^2 + 6}$$

- (a) 6
- (b) 1/6
- (c) 0
- (d) ∞
- (e) does not exist

All problems are to be done without the use of a calculator unless denoted with an *. You may show you work in this packet OR on graph/lined paper.

Class:

39.

Find the slope of the tangent line to the graph of f at the point (0,3).

$$f(x) = 3 - 4x$$

- (a) -4 (b) -3 (c) 3 (d) 1 (e) -1

40.

Find the slope of the tangent line to the graph of f at the point (2,-9).

$$f(x) = 1 + x - 3x^2$$

- (a) -11 (b) 12 (c) -6 (d) -9 (e) -1

41.

Find the derivative of the function at the given number.

$$g(x) = x^2 + x^3$$
 at 1

- (b) -4 (c) 5 (d) -5 (e) -2

42.

Find f'(a).

$$f(x) = \sqrt{x+7}$$

(a)
$$-\frac{1}{\sqrt{a+7}}$$
 (b) $\frac{\sqrt{a-7}}{2}$ (c) $\frac{1}{2\sqrt{a+7}}$ (d) $-\frac{1}{2\sqrt{a+7}}$ (e) none of these

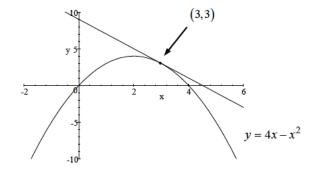
(b)
$$\frac{\sqrt{a-1}}{2}$$

(c)
$$\frac{1}{2\sqrt{a+7}}$$

(d)
$$-\frac{1}{2\sqrt{a+7}}$$

43.

Find the equation of the tangent line shown in the figure.



- (a) v = 9 2x
- (b) y = 2x + 6
- (c) y = 6 9x
- (d) y = 3 9x

All problems are to be done without the use of a calculator unless denoted with an *. You may show you work in this packet OR on graph/lined paper.

44.

Find the equation of the line tangent to the graph of $f(x) = \frac{x^3}{2}$ at the point $(1, \frac{1}{2})$.

- (a) $y = \frac{3}{2}x 1$ (b) y = 3x 1 (c) y = 3x 2 (d) $y = \frac{3}{2}x + 2$ (e) y = 2x + 3

45.

A rocket is fired directly upward from the ground with a velocity of 128 ft/s. Its height H after t seconds is given by $H(t) = 128t - 16t^2$. Find the velocity of the rocket when t = a seconds.

- (a) 256 ft/s
- (b) 128a ft/s
- (c) 128 32a ft/s
- (d) 32a ft/s
- (e) 128-16a ft/s

46.

An object is dropped from a height of 550 ft. Its distance above the ground after t seconds is given by $h(t) = 550 - 16t^2$. Find the object's instantaneous velocity after 1.5 s.

- (a) 48.0 ft/s
- (b) -32.0 ft/s
- (c) -48.0 ft/s
- (d) 32.0 ft/s
- (e) −16.0 ft/s

47.

Determine whether the sequence $a_n = \frac{n^3}{n^3 + 5}$ converges or diverges. If it converges, find the limit.

- (a) converges, 1
- (b) converges, -1 (c) converges, 5 (d) converges, 0
- (e) diverges

48.

Determine whether the sequence $a_n = \left(\frac{4}{3}\right)^n$ converges or diverges. If it converges, find the limit.

- (a) converges, -4/3 (b) converges, 4 (c) converges, -3 (d) converges, 1

- (e) diverges

49*.

The downward velocity of a falling raindrop at time t is modeled by the function $v(t) = 2.3 \left(1 - e^{-6.3t}\right)$. Find the terminal velocity of the raindrop by evaluating $\lim v(t)$

- (a) 6.3
- (b) -6.3 (c) 2.3 (d) -3.2

- (e) 1

All problems are to be done without the use of a calculator unless denoted with an *. You may show you work in this packet OR on graph/lined paper.

50.

Estimate the area under the graph of $f(x) = x^2 - 1$ from x = 1 to x = 5 using four approximating rectangles and *left* endpoints.

(a) 24 (b) $\frac{8}{3}$ (c) $\frac{23}{24}$ (d) 26 (e) 13

51.

Estimate the area under the graph of $f(x) = 2^{-x}$ from x = 0 to x = 4 using four approximating rectangles and *right* endpoints.

(a) $\frac{15}{16}$ (b) 1 (c) $\frac{13}{16}$ (d) $\frac{7}{8}$ (e) $\frac{13}{14}$