

Section 1.1 – Segment Lengths & Midpoints

Use the distance formula to determine whether each pair of segments $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ have the same length.

3 G Г Х 0 Ż -3 F Κ -5

1. \overline{CD} and \overline{EF}

2. \overline{GH} and \overline{JK}

Determine the coordinates of the midpoint for each segment.	<i>M</i> =	$\left(\frac{x_1}{2}\right)$	- x ₂ , y	$\frac{y_1 + y_2}{2}$	$\frac{r_2}{2}$	

- 3. \overline{PQ} has endpoints P(5, -3) and Q(2, 4). 4. \overline{RS} has endpoints R(-2, 3) and S(-8, -2).

Midpoint: _____

Midpoint: _____

Use the Segment Addition Postulate to solve for x.

 $F \stackrel{2x-16}{\underbrace{E}} D$ 5. x + 5

P

0

Name_		Date	Class
<u>Section</u>	on 1.4 – Reasoning & Proof		
Fill in	the blank with the correct conclusion	about each situation.	
1.	Through any two points, there is		
2.	I hrough any three noncollinear points,	there is	
3.	If two points lie in a plane, then the line	containing those points _	
_			
4.	If two lines intersect, then they intersect		

5. If two planes intersect, then they intersect ____

Use the figure to name each of the results described.

6.

Description	Example from the figure
the line of intersection of two planes	
the point of intersection of two lines	
three coplanar points	
three collinear points	

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.

Section 2.1 – Translations

Use the figure below to answer Problems 1–3.

1. Triangle RST is translated along vector \vec{v} to create the image R'S'T'. What are the coordinates of the vertices of the image?

- 2. Write the coordinate notation for the translation of $\triangle RST$ to $\triangle R'S'T'$?
 - $(\mathsf{x},\,\mathsf{y}) \not \rightarrow (____ , ____)$
- 3. Name vector \vec{v} using component form. $\langle _, _\rangle$

Use the figure below to answer Problems 4–5.

4. Triangle J'K'L' is the image of ΔJKL under a translation. Draw the translation vector \vec{v} from a point to its image in $\Delta J'K'L'$. Write the vector in

component form. $\langle _, _\rangle$

- 5. Triangle *J'K'L'* is also the image of $\triangle DEF$ under a translation along a vector $\langle -6, 4 \rangle$. Find the coordinates of points D, E, and F, and draw $\triangle DEF$.
 - D _____
 - E_____
 - F_____

Section 2.2 – Reflections

Study the figures on the grid and answer the questions.

- 1. Which figure is the reflection of figure A over the y-axis? _____
- 2. Which two figures have x = -3 as their line of reflection? _____ and _____
- 3. Which figure is the reflection of figure A over the line y = x?
- 4. What is the equation of the line of reflection for figures G and H?
 - y = _____
- 5. Which figures are **not** reflections of

figure A? Name all.

Reflect the figure over the given line of reflection

6. M(1, 2), N(1, 4), P(3, 3); y-axis

7. S(3, 4), T(3, 1), U(-2, 1), V(-2, 4); x-axis

Section 2.3 – Rotations

Follow the directions for Problems 1–2 to analyze rotations.

1. How many degrees was figure

ABCD rotated to A'B'C'D'?

_____ degrees counterclockwise

2. Write the coordinate notation rule

 $(x, y) \rightarrow ($ ______, ____)

3. Find the coordinates of points on ABCD and corresponding points on its image. Label A', B', and C'.

Draw the image of the figure under the given rotation (counterclockwise).

4. Quadrilateral ABCD; 270°

6. *△PQR*; 90°

5. $\triangle KLM$; 180°

7. Quadrilateral *DEFG*; 270°

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.

Section 2.4 – Symmetry (Lines & Rotational)

Use the figures on the grid to answer Problems 1–3.

3. Does figure C have line symmetry, rotational symmetry, or both?

Tell whether each figure appears to have line symmetry, rotational symmetry, both, or neither. If line symmetry, tell how many lines of symmetry. If rotational symmetry, give the angle of rotational symmetry.

Section 3.1 – Sequence of Transformations

1. Rectangle ABCD is reflected across the y-axis, rotated 90° clockwise, and translated along the vector $\langle -6, 2 \rangle$. Plot each transformation.

2. Rectangle ABCD is translated along the vector (2, -1), rotated 180°, and reflected across the x-axis. Plot each transformation.

Α(,) →	Α' (,) \rightarrow A" (,) \rightarrow A'" (,)
В (,) \rightarrow	В' (,) \rightarrow B" (,) \rightarrow B'" (,)
С(,) →	C' (,) \rightarrow C" (,) \rightarrow C''' (,)
D (,) →	D' (,) \rightarrow D" (,) \rightarrow D''' (,)

3. Rectangle ABCD is rotated 90° counterclockwise, reflected across the y-axis, and translated along the vector (0, 6). Plot each transformation.

Section 3.2 – Proving Figures Congruent

Determine whether $\triangle ABC$ and $\triangle MNP$ are congruent. If they are, specify a sequence of rigid motions that maps one figure onto the other.

For each pair of congruent figures, specify a sequence of rigid motions that maps one figure onto the other.

5.

6. $JKLM \cong WXYZ$

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.

Section 3.3 – Corresponding Parts of Congruent Figures

1. Δ <i>KLM</i> ≅	∆GHI		2. Rho	mbus WXYZ	$2 \cong$ rhombus <i>DEF</i>
∠ <i>K</i> ≅	KL ≃		$\angle W$	≅	≅ DE
∠ <i>L</i> ≅	LM ≅			$\cong \angle E$	XY ≅
∠ <i>M</i> ≅	KM ≅ _			$\cong \angle F$	≅FG
			$\angle Z$	≅	WZ ≅
uadrilateral	ABCD ≅ quad	rilateral <i>EFGH</i> .	Find the val	ue of the	
dicated var 3. Find the v	value of <i>w</i> .	diagrams provi	ded below. 4. Find	l the value of	х.
5. Find the v	value of <i>v</i> .		6. Find	l the value of	Ζ.
	,				
7. What is th	ne length of EF.		8. Wha	at is the meas	sure of $\angle C$.
	-				
	16	B			
		5w + 7	7		
50°		$(2z - 1)^{\circ}$			
)		С			
	3y + 1	F			
		8			
$2x^{\circ}$		80°			

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.

Name	Date	Class
Section 4.1 – Angles Formed by Intersectin	<u>g Lines</u>	
1. The sum of the angle measures for a linea	ar pair is:	
2. Vertical angles are:	_	D 1
Use the figures for Problems 3–8.	A (y -	+ 30)°
3. supplement of $\angle AEB =$	50°	E $(x + 15)^{\circ}$
4. complement of $\angle AEB =$	B	C
5. <i>x</i> =	6. <i>y</i> =	
7. m∠ <i>DEC</i> =	8. m∠ <i>AED</i> =	
9. $\angle DEF$ and $\angle FEG$ are complementary. m $\angle m \angle FEG = (5x + 6)^{\circ}$.	$\Delta DEF = (3x - 4)^{\circ}$, and	
x = ∠DEF = ∠	FEG =	
10. ∠ <i>DEF</i> and ∠ <i>FEG</i> are supplementary. m∠ m∠ <i>FEG</i> = $(8x + 9)^{\circ}$.	<i>DEF</i> = (9 <i>x</i> + 1)°, and	
x = ∠DEF = ∠	FEG =	
Use the figure for Problems 11 and 12. 11. Name a pair of vertical angles.		4
12. Name a linear pair of angles.	C	9
13. What is the value of b? 14	4. What is the value of b?	
80° →	64° b	

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.

¥

¥

Section 4.2 – Transversals & Parallel Lines

Find each angle measure and state the angle relationship (Alternate Interior, Alternate Exterior, Corresponding, Same Side Interior).

For questions 5 & 6, use the diagram below.

- 5. List all the angles congruent to \angle 5: _____
- 6. List all the angles congruent to ∠4: _____

Section 4.3 – Proving Lines Parallel

Find the angle measure that makes the lines parallel. State the converse that proves lines parallel.

Find the value of x that makes the lines parallel. State the converse that proves the lines parallel.

6.

5.

Section 4.4 – Perpendicular Lines

For Problems 1–5, determine the unknown values.

1. Given: \overrightarrow{AC} is the perpendicular 2. Given: **CD** is the perpendicular bisector of *GH*. bisector of **PR**. 17 15 CR = _____ GH = _____ CH = PQ =Given: \overrightarrow{WY} is the perpendicular Given: \overrightarrow{CE} is the perpendicular 3. 4. bisector of \overline{FG} . bisector of \overline{AB} . Х Έ 9 18 27 FG = _____ W/A = _____ В FD = AX = CG = AB = _____

Use the Converse of the Perpendicular Bisector Theorem and the Pythagorean Theorem.

5. \overline{AD} is 10 inches long. \overline{BD} is 6 inches long. Find the length of \overline{AC} .

Section 4.5 – Equations of Parallel & Perpendicular Lines

POINT-SLOPE FORM: $y - y_1 = m(x - x_1)$

Write an equation parallel to the given line through the given point.

1. parallel to y = 9x + 4through (2, 7) 2. parallel to y = 4x - 6through (6, -3)

3. parallel to $y = \frac{2}{3}x + 6$ through (-3, 6) 4. parallel to $y = -\frac{1}{4}x - 12$ through (12, 10)

Write an equation perpendicular to the given line through the given point.

5. perpendicular to $y = \frac{1}{4}x + 3$ through (4, 1) 6. perpendicular to $y = -\frac{1}{3}x - 6$ through (-2, 8)

7. perpendicular to y = -6x - 9through (6, 10) 8. perpendicular to y = 5x + 14through (5, -3)

Section 5.1 – Exploring Triangle Congruency

 $\triangle QRS \cong \triangle JKL.$

13. Mark all the congruent corresponding parts of the two triangles.

Section 5.2 – ASA Triangle Congruence

Are the two triangles congruent? If so, what statement proves them congruent. (ASA)

What additional information is needed to prove the two triangles congruent by ASA.

Section 5.3 – SAS Triangle Congruence

Are the two triangles congruent? If so, what statement proves them congruent. (ASA or SAS)

What additional information is needed to prove the two triangles congruent by SAS.

8.

Section 5.4 – SSS Triangle Congruence

Are the two triangles congruent? If so, what statement proves them congruent. (ASA or SAS or SSS)

What additional information is needed to prove the two triangles congruent by SSS.

Section 6.2 – AAS Triangle Congruence

Are the two triangles congruent? If so, what statement proves them congruent. (ASA or SAS or SSS or AAS)

What additional information is needed to prove the two triangles congruent by AAS.

Section 6.3 – HL Triangle Congruence

Are the two triangles congruent? If so, what statement proves them congruent. (ASA or SAS or SSS or AAS or HL)

What additional information is needed to prove the two triangles congruent by HL.

8.

_____ Date _____ Class _____

Section 7.1 – Interior and Exterior Angles

K

5t

Section 7.2 – Isosceles and Equilateral Triangles

For Problems 1–6, find each value.

2

⁄ 60°

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.

4x + 7

Nam	ne			Date	Class
<u>Sec</u>	<u>ction 7.3 –</u>	Triangle Ineq	<u>ualities</u>		2 ¹ / ₂
1.	Write the	angles of <i>∆DE</i>	EF in order from	smallest to larg	Jest. F 2 $1\frac{1}{4}$
	۷	∠			
2.	Write the	sides of ΔGH	// in order from le	ongest to shorte	est.
				_	$G^{59^\circ 61^\circ}H$
3.	The sides shortest . triangle to	of triangle XY Name the ang the right to he	Z are given in or les from largest lp you solve)	der below from I o to smallest. (Hint	ingest to
	XZ	ZY	YX		
	۷	∠			
Use	e your kno	wledge of tria	ingle inequalitie	es to solve Prob	lems 4–8.
4.	Can three	e segments with	n lengths 8, 15, a	and 6 make a tria	ingle?
5.	Can three	e segments with	n lengths 3, 5, ai	nd 8 make a triar	gle?
6.	Can three	e segments with	n lengths 7, 6, ai	nd 14 make a tria	ingle?
6.	Can three	e segments with	n lengths 7, 9, ai	nd 13 make a tria	ingle?
7.	A triangle	has the side le	engths of 7 and $^{\prime}$	13. What is the ra	inge of
	possible s	side lengths? _	< x <		
8.	A triangle	has the side le	engths of 17 and	29. What is the	range of
	possible s	side lengths? _	< X <		

Section 8.4 – Midsegments of a Triangle

Use the figure for Problems 1–6. Find each measure.

For Problems 7–9, find the value of n.

Section 9.1 – Properties of Parallelograms

PQRS is a parallelogram. Find each measure.

- 1. *R*S_____
- 2. m∠S_____
- 3. m∠*R*

The figure shows a swing blown to one side by a breeze. As long as the seat of the swing is parallel to the top bar, the swing makes a parallelogram. In \square ABCD, DC = 2 ft, BE = 4.5 ft, and m \angle BAD = 75°. Find each measure.

4.	AB	

5. *ED*

6. *BD*

7. m∠ABC_____ 8. m∠BCD_____ 9. m∠ADC_____

Find the value of each variable.

10.

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.

Section 9.2 – Conditions for Parallelograms

Determine whether each figure is a parallelogram for the given values of the variables. Explain your answers.

3.
$$a = 2.4$$
 and $b = 9$

4. u = 8 and v = 3.5

5. What are the conditions (5) for a quadrilateral to be a parallelogram.

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.

Section 9.3 – Properties of Rectangles, Rhombuses, and Squares

Tell whether each figure is a parallelogram, rectangle, rhombus, or square based on the information given. Use the most specific name possible.

A modern artist's sculpture has rectangular faces. The face shown here is 9 feet long and 4 feet wide. Find each measure in simplest radical form. (*Hint:* Use the Pythagorean Theorem.)

5. *DC* = _____ 6. *AD* = _____

7. *DB* = _____ 8. *AE* = _____

VWXY is a rhombus. Find the value of the variable.

9.) m = n =

ABCD is a rhombus. Find each measure.

10.) x = _____ y = _____

Continu 0 1 (Conditiona	of Dootonaloo	Dhamhuaaa	a b d	Carrona
3ecnon 9.4 – (Jonomons	or recianoles.	Rhomouses	and	Souares

1. What are the conditions (2) for a parallelogram to be a rectangle.

2. What are the conditions (3) for a parallelogram to be a rhombus.

Fill in the blanks to complete each theorem.

4. If one pair of consecutive sides of a parallelogram are congruent, then

the parallelogram is a ______.

- 5. If the diagonals of a parallelogram are _____, then the parallelogram is a rhombus.
- _____ of a parallelogram are congruent, then 6. If the the parallelogram is a rectangle.
- 7. If one diagonal of a parallelogram bisects a pair of opposite angles,

then the parallelogram is a

- 8. If one angle of a parallelogram is a right angle, then the parallelogram
 - is a _____.

Find the value of x that makes each parallelogram the given type.

9. square

10. rhombus

 $\int 2x + 5$

х =

х =

5. Find m $\angle Z$.

6. *KM* = 7.5 and *NM* = 2.6. Find *LN*.

7. Find the value of *n* so that *PQRS* is isosceles.

9. BD = 7a - 0.5 and AC = 5a + 2.3. Find the value of a so that ABCD is isosceles.

A ziggurat is a stepped, flat-topped pyramid that was used as a temple by ancient peoples of Mesopotamia.

11. The bottom is 27.3 meters long, and the top is 11.6 meters long. Find MN. MN is the midsegment of the trapezoid.

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.

Nan	ne	Date	Class
<u>Sec</u>	ction 10.1 – Slopes and Parallel I	Lines	$m = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1}$
Pro	ove that ABCD is a parallelogram	1.	
1.	ABCD is a parallelogram if AB _	and AD	
2.	Names the coordinates of A, B, C	, and <i>D</i> .	
	ABC	D	
3.	Find the slope of \overline{AB} .		
4.	Find the slope of \overline{BC} .		
5.	Find the slope of \overline{CD} .		
6.	Find the slope of \overline{DA} .		
7.	Do you have enough information Why or why not?	to prove that <i>ABCD</i> is a par	allelogram?
Fin are	d the missing coordinate point t G(0, 0), <i>H</i> (2, 3), and <i>J</i> (6, 1). Use	hat forms a parallelogram the grid to the right to co	n. Three vertices of <i>⊡</i> GHIJ mplete Problems 8–13.
	Plot vertices G, H, and J on the c	oordinate plane.	ТУ ПОЛИТИ
8.	Find the rise (difference in the y-c	coordinates) from	3
	G to H		
		.	0 3
9.	Find the run (difference in the x-c	oordinates) from	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
	G to H		
10.	Using your answers from Problen y-coordinate of vertex J and add t	ns 8 and 9, add the rise to t the run to the <i>x</i> -coordinate o	ne of vertex <i>J</i> .

X

The coordinates of vertex *I* are (_____, ____).

11. Plot vertex *I*. Connect the points to draw \Box *GHIJ*.

186

Section 10.2 – Slope and Perpendicular Lines

Prove that $\Box WXYZ$ is a rectangle.

1. Name the coordinates of W, X, Y, and Z.

W X Y Z

2. Calculate the slopes of each side of the parallelogram.

<u>WX</u> = _____ <u>XY</u> = _____

 $\overline{YZ} = \underline{\qquad} \overline{ZW} = \underline{\qquad}$

3. Find the products of the slopes of these segments:

 \overline{WX} and $\overline{XY} = \underline{XY}$ and $\overline{YZ} = \underline{XY}$

 \overline{YZ} and $\overline{ZW} = \underline{ZW}$ and $\overline{WX} = \underline{ZW}$

4. Is WXYZ a rectangle? Why or why not?

Figure WXYZ has as its vertices the points W(2, 7), X(5, 6), Y(5, -4), and Z(-1, -2).

Find each slope.

6. \overline{WX}

 \overline{XY}

Ϋ́Z

ZW

7. Is Figure WXYZ a rectangle? Explain your reasoning.

Name_____ Date _____ Class _____

 $m = \frac{y_2 - y_1}{x_2 - x_1}$

Section 10.5 – Area in the Coordinate Plane

Find the area of the polygon to the nearest tenth.

1. E(-4, 1), F(-2, 3), G(-2, -4)

	<i>'</i>	У			
				_	
	2-			-	
				-	x
-2	0		2		
	-2-			_	
				_	
	-			_	

2. T(-2, 2), U(3, 2), V(1, -1), W(-4, -1)

3. A(-2, 3), B(3, 1), C(-2, -1), D(-3, 1)

4. P(-1, -3), Q(5, -3), R(5, 1), S(3, 3), T(-1, 1)

					y				
				2-	-				
					_				
•	_	_	>	0	-	,	-	-	\rightarrow
				- U			e		
		-2	-	0		4	-		_
			-	-2-			<u> </u>		
			-	-2-	-		<u></u>		

Find the area of each composite figure to the nearest tenth.

5. Subtraction

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.